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Multifractality of the Feigenbaum Attractor
and Fractional Derivatives
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It is shown that fractional derivatives of the (integrated) invariant measure
of the Feigenbaum map at the onset of chaos have power-law tails in their
cumulative distributions, whose exponents can be related to the spectrum of
singularities f (α). This is a new way of characterizing multifractality in dynam-
ical systems, so far applied only to multifractal random functions [Frisch and
Matsumoto, J. Stat. Phys. 108:1181, 2002]. The relation between the thermo-
dynamic approach [Vul, Sinai and Khanin, Russian Math. Surveys 39:1, 1984]
and that based on singularities of the invariant measures is also examined. The
theory for fractional derivatives is developed from a heuristic point view and
tested by very accurate simulations.
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1. INTRODUCTION

Recently a new method for analyzing multifractal functions u(x) was
introduced.(1) It exploits the fact that the fractional derivative of order a

(denoted here by Da) of u(x) has, for a suitable range of a, a power-law
tail in its cumulative probability

Prob{|Dau|>ξ}∝ ξ−p�, ξ →∞. (1)
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The exponent p�(a) is the unique solution of the equation

ζp� =p�(a)a, (2)

where ζp is the scaling exponent associated to the behavior at small sepa-
rations l of the structure function of order p, i.e. 〈|u(x + l)−u(x)|p〉∼|l|ζp .
It was also shown that the actual observability of the power-law tail when
multifractality is restricted to a finite range of scales is controlled by how
much ζp departs from linear dependence on p. The larger this departure
the easier it is to observe multifractality.

So far the theory of such power-law tails has been developed only for
synthetic random functions, in particular the random multiplicative pro-
cess(2) for which Kesten-type maps(3) and large deviations theory can be
used.

It is our purpose here to test the fractional derivative method for
invariant measures of dissipative dynamical systems, in particular for the
Feigenbaum invariant measure which appears at the accumulation point of
the period doubling cascade where the orbit has period 2∞,(4,5) Its mul-
tifractality was proven rigorously in ref. 6 using a thermodynamic formal-
ism. For the Feigenbaum measure all scaling exponents can be determined
with arbitrary accuracy.

There is an important difference in the way one processes functions
and invariant measures to determine their multifractal properties and in
particular the spectrum of singularities, usually denoted D(h) for functions(7)

and f (α) for measures.(8,9) For a function u(x) one uses the moments or the
PDFs of the increments u(x + l)−u(x) to determine the scaling exponents,
whereas for an invariant measure µ0 one works with integrals over intervals
or boxes of different sizes. In the one-dimensional case the two approaches
become equivalent by introducing the cumulative distribution function

u(x)≡
∫ x

−∞
µ0(dx). (3)

Hence we shall apply the fractional derivative method to the integral of
the invariant measure.

The organization of the paper is the following. Section 2 is devoted
to the thermodynamic formalism for the Feigenbaum attractor. In Sec-
tion 2.1, we recall the method used in ref. 6. In Section 2.2 we show
how this formalism, based on the study of the geometrical properties of
the attractor, is actually connected to the standard multifractal formalism
which focusses on the statistical properties of the invariant measure.(8,9)
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This connection was established by M. Feigenbaum.(10,11) However for
convenience of readers we present relevant results here. Then, in Sec-
tion 2.3 we calculate numerically the free energy and accordingly the scal-
ing exponents ζp for the integral of the invariant measure; this is done by
a very accurate transfer-matrix-based method. Fractional derivatives are
discussed in Section 3. In Section 3.1 we briefly recall the phenomenology
of power-law tails in the distribution of fractional derivatives and the lim-
its on observability. The fractional derivative analysis of the Feigenbaum
measure is presented in Section 3.2. Concluding remarks are made in
Section 4.

2. THERMODYNAMIC FORMALISM FOR THE FEIGENBAUM

ATTRACTOR

2.1. Thermodynamic formalism

In this section we give a brief description of the thermodynamic for-
malism for the invariant measure of the Feigenbaum map (see ref. 6 for
the mathematical details) and show how one can use it in order to study
the multifractal properties of the Hölder exponents.

By Feigenbaum attractor we understand the attractor of the one-
dimensional mapping g : [0,1]→ [0,1], where g(x) is the solution of the Fe-
igenbaum–Cvitanović doubling equation:

g(x)=− 1
γ

g(g(γ x)), g(0)=1, γ = 1
α

=−g(1) . (4)

Eq. (4) is known to have the unique solution in the class of smooth
unimodal maps (that is, maps having one critical point) with a non-degen-
erate maximum. This solution is called the Feigenbaum map. It is holo-
morphic in some complex neighborhood of [−1,1] and the first few terms
in the power series expansion are(12)

g(x)=1−1.5276 . . . x2 +0.1048 . . . x4 +0.0267 . . . x6 −0.003527 . . . x8 + . . . .

(5)

The value of the universal constant γ which is the inverse of the Feigen-
baum scaling constant α is approximately equal to 0.3995. An attractor
A for the map g can be constructed in the following way. For each n� 1
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define a collection of intervals of n-th level:

�
(n)

0 = [−γ n, γ n],

�
(n)
i =g(i)(�

(n)

0 )≡g ◦g ◦ · · · ◦g︸ ︷︷ ︸
i

(
�

(n)

0

)
(1� i �2n −1). (6)

The following properties of the intervals �
(n)
i are easy consequences

of the doubling Eq. (4): (a) Intervals �
(n)
i ,0 � i � 2n − 1 are pairwise dis-

joint; (b) g(2n)�
(n)

0 ⊂ �
(n)

0 ; (c) Each interval of n-th level �
(n)
i contains

exactly two intervals of (n + 1)-th level; �
(n+1)
i and �

(n+1)

i+2n ; (d) 2γ 2n �
|�(n)

i | � 2γ n, where | · | denotes the length of the interval. The first three
levels of the intervals are shown in Fig. 1.

The properties above imply that it is natural to use a dyadic represen-
tation for the intervals �

(n)
i . Let i =∑n−1

j=0 εj 2i , where εj = 0,1. Then we

can use a sequence (ε0, . . . , εn−1) as a symbolic coding for intervals �
(n)
i :

�
(n)
i =�

(n)
ε0,...,εn−1 . Now we can define the Feigenbaum attractor

A=
⋂
n�1

2n−1⋃
i=0

�
(n)
i . (7)
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Fig. 1. The Feigenbaum–Cvitanović map g(x) and the first three levels of the partitions
�

(n)
j . For g(x) we used the expansion (5), introduced in ref. 12 up to x32.
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The set A is isomorphic to the set of all infinite dyadic sequences
(ε0, ε1, . . . , εn, . . . ). Such sequences can be considered as a symbolic coor-
dinate system on A. In this new coordinate system the map g acts as the
dyadic addition of the sequence (1,0, . . . ,0, . . . ). Notice that topologically
A is a Cantor set. It is easy to see that A is indeed an attractor for all but
countably many initial points x ∈ [−1,1] : dist(g(m)(x),A)→ 0 as m→∞.
The exceptional set of initial points consists of all unstable periodic orbits
and their preimages.

As we have seen above, all intervals �
(n)
i have exponentially small

lengths but the exponent varies from γ n to γ 2n. Notice that exponents
ln |�(n)

i | give all possible scalings of the fractal set A. The basic ingredi-
ent which is needed for the multifractal analysis is the control over the
spectrum of possible scalings corresponding to these exponents. Such con-
trol can be achieved with the help of the thermodynamic formalism. The
thermodynamic formalism which was constructed in ref. 6 is based on the
Gibbsian description for the lengths of the intervals �

(n)
i . It is shown in

ref. 6 that there exists a function U(ε(1), ε(2), . . . , ε(n), . . . ) (thermodynamic
potential) which is defined on all infinite dyadic sequences such that:

I. There exists a constant C >0 for which

1
C

�−U(ε(1), ε(2), . . . , ε(n), . . . )�C . (8)

II. For any two dyadic sequences

(ε(1), ε(2), . . . , ε(n), ε̄ (n+1), ε̄ (n+2), . . . ) , (ε(1), ε(2), . . . , ε(n), ε̃ (n+1), ε̃ (n+2), . . . )

which coincide on the first n positions

|U (ε(1), ε(2), . . . , ε(n), ε̄(n+1), ε̄ (n+2), . . . )

−U(ε(1), ε(2), . . . , ε(n), ε̃ (n+1), ε̃ (n+2), . . . )|�C(2γ )n . (9)

III. For any �
(n)
ε0,... ,εn−1 with ε0 =1

exp[−C(2γ )
n
3 ] �

|�(n)
ε0,... ,εn−1 |

|�(n−1)
ε0,... ,εn−2 |

exp(−U(εn−1, . . . , ε1,1,0, . . . ,0, . . . ))

� exp[C(2γ )
n
3 ] . (10)
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It immediately follows from (10) that for C1 = exp
[

C

1−(2γ )
1
3

]

1
C1

�

∣∣∣�(n)

1,ε1,...,εn−1

∣∣∣
exp

[∑n−1
s=0 U(εs, εs−1, . . . , ε1,1,0, . . . ,0, . . . )

] �C1 . (11)

The condition ε0 = 1 corresponding to intervals �
(n)
i with odd i’s plays

only a technical role and it is not essential for our further analysis since
the odd intervals contain information about the lengths of the even ones.
Indeed, it is very easy to see that for every odd i the intervals �

(n)
i and

�
(n)

i+1 have lengths of the same order.
We next introduce a parameter β (inverse temperature) and define the

partition function

Zn(β)=
∑

εn−1,...,ε0=0,1

exp

[
β

n−1∑
s=0

U(εs, εs−1, . . . , ε1,1,0, . . . ,0, . . . )

]
(12)

and the free energy

Fn(β)= ln Zn(β)

n
, F (β)= lim

n→∞Fn(β) . (13)

It immediately follows from (12) and (13) that

2n−1∑
i=0

|�(n)
i |β ∼ exp[nF(β)]. (14)

In the thermodynamic limit n→∞ the probability distributions

ν
(n)
β (εn−1, εn−2, . . . , ε1)

= 1
Zn(β)

exp

[
β

n−1∑
s=0

U(εs, εs−1, . . . , ε1,1,0, . . . ,0, . . . )

]
(15)

tend to a limiting distribution νβ which can be considered as a Gibbs
measure with the potential U , inverse temperature β and the boundary
condition ε0 =1, ε−i =0, i ∈N. This Gibbs distribution generates the prob-
ability measure on A+ =A∩�

(1)

1 which is the part of the whole attractor
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A corresponding to intervals �
(n)
i with odd numbers i. We shall denote

this Gibbs measure on A+ by µβ . Notice that β = 0 corresponds to a
unique invariant measure and β = 1 gives a conditional distribution cor-
responding to Lebesgue measure on [−1,1]. The free energy F(β) con-
tains all information about the multifractal properties of the Feigenbaum
attractor. Notice that the thermodynamic formalism leads to one-dimen-
sional statistical mechanics with exponential decay of interactions and
hence without phase transitions. This implies that F(β) is a smooth func-
tion. In fact it is holomorphic in some complex neighborhood of the real
axis. Denote

H(εn−1, . . . , ε1)=
n−1∑
s=0

U(εs, εs−1, . . . , ε1,1,0, . . . ) . (16)

Using relations

F ′
n(β) = 1

Zn(β)

∑
εn−1,...,ε0=0,1

1
n
H(εn−1, . . . , ε1) exp [βH(εn−1, . . . , ε1)]

=
〈

ln |�(n)

1,ε1,...,εn−1
|

n

〉

ν
(n)
β

+O

(
1
n

)
(17)

and

F ′′
n (β) = 1

Zn(β)

∑
εn−1,...,ε0=0,1

(
1
n
H(εn−1, . . . , ε1)

)2

exp [βH(εn−1, . . . , ε1)]

−
⎛
⎝ 1

Zn(β)

∑
εn−1,...,ε0=0,1

1
n
H(εn−1, . . . , ε1) exp [βH(εn−1, . . . , ε1)]

⎤
⎦

2

=
〈⎛
⎝ ln |�(n)

1,ε1,...,εn−1
|

n

⎞
⎠

2〉

ν
(n)
β

−
⎛
⎝
〈

ln |�(n)

1,ε1,...,εn−1
|

n

〉

ν
(n)
β

⎞
⎠

2

+O

(
1
n

)
,

(18)

we conclude that F(β) is a monotone decreasing convex function. We
shall also use the spectral representation for the free energy. Consider the
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transfer-matrix operator L(β):

L(β)h(ε(1), ε(2), . . . , ε(n), . . . ) =
∑

ε(0)=0,1

exp[βU(ε(0), ε(1), ε(2), . . . , ε(n), . . . )]

×h(ε(0), ε(1), ε(2), . . . , ε(n), . . . ) . (19)

Since L(β) is a positive linear operator, its largest eigenvalue λ(β) is
strictly positive and simple. It is easy to see that

F(β)= ln λ(β) . (20)

For an arbitrary point x ∈A+, denote by �(n)(x) the interval of the
n-th level which contains x. It follows from (17) that for points x which
are typical with respect to µβ (that is corresponding to a set of full
µβ -measure)

|�(n)(x)| ∼ exp[F ′(β)n] . (21)

More precisely, for µβ -almost all x ∈A

lim
n→∞

ln |�(n)(x)|
n

=F ′(β) . (22)

We next find the total number Nn(β) of the intervals of n-th level whose
length is of the order |�(n)(β)|= exp[F ′(β)n]. We have

Nn(β)|�(n)(β)|β ∼ Nn(β) exp[βF ′(β)n] ∼ Zn(β) ∼ exp[F(β)n] (23)

which gives

Nn(β) ∼ exp[(F (β)−βF ′(β))n] . (24)

Using (24) we can find the Hausdorff dimension dH (β) of the set of points
x ∈A+ which are typical with respect to the measure µβ . Since

Nn(β)|�(n)(β)|dH (β) ∼ exp[(F (β)−βF ′(β)+dH (β)F ′(β))n] (25)

we conclude that

F(β)−βF ′(β)+dH (β)F ′(β)=0 (26)
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which immediately implies

dH (β)= βF ′(β)−F(β)

F ′(β)
=β − F(β)

F ′(β)
. (27)

The Hausdorff dimension dH (A) of the whole attractor A is equal to the
maximum of dH (β) over all β ∈ R. Let β0 be the unique solution of the
equation F(β)=0. It is easy to see that dH (A)=dH (β0)=β0.

We next discuss multifractal properties associated with the Hölder
exponents. Consider the integral u(x) of the invariant measure µ0, defined
by (3), which is plotted in Fig. 2. Since the attractor is topologically a
Cantor set, the function u(x) is a variant of the Devil’s staircase (see
ref. 13, Section 8.2).

To find its spectrum of Hölder exponents, notice that for every inter-
val �

(n)
i the increase of u(x) along the interval is equal to 2−n. Hence

�
(n)
i corresponds to a Hölder exponent hn(i)=α where |�(n)

i |α ∼ 1
2n . This

implies

|�(n)
i | ∼ 2− n

α . (28)

0
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Fig. 2. The integral u(x) of the Feigenbaum invariant measure calculated with 215 bins of
uniform length �=2−14 in [−1,1]. Inset: The invariant measure smoothed over the distance
� calculated as a frequency histogram.
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Using (21) and (28) we conclude that the Hölder exponent α corresponds
to an inverse temperature β(α) such that

F ′(β(α))=− ln 2
α

. (29)

This gives

β(α)= (F ′)−1
(

− ln 2
α

)
, (30)

where (F ′)−1(y) is the inverse function to F ′(x). We can now find the
Hausdorff dimension dH (α) of the set of points x ∈A for which the Hölder
exponent of u(x) is equal to α:

dH (α)=dH (β(α))=β(α)− F(β(α))

F ′(β(α))
. (31)

Notice that the analysis presented above can be made completely rigorous
(see, for example, refs. 6 and 14).

2.2. Connection between Thermodynamic Formalism

and Standard Multifractal Analysis

It is quite interesting to compare the multifractal analysis which we
presented above with the one introduced in ref. 9. Although we restrict
ourselves here to the case of the Feigenbaum attractor, the result presented
below holds in a much more general setting. Basically our analysis is valid
whenever the system under consideration can be described with the help of
the thermodynamic formalism.

The basic object for our analysis is the Feigenbaum attractor itself
and the method is based on the construction of the thermodynamic for-
malism for the lengths of the elements of dynamic partitions �

(n)
i . The

thermodynamic formalism uses considerable dynamical information about
the map g. In contrast, the analysis in ref. 9 is carried out for fractal
measures and does not directly use the dynamical information about the
system. In the period-doubling setting the fractal measure is µ0. It is the
unique invariant measure for g acting on A (see ref. 6). It also can be
considered as a physical or Sinai–Ruelle–Bowen (SRB) measure on [−1,1].
This means that under dynamics given by the map g any initial absolutely
continuous distribution µ̄ on [−1,1] converges to µ0: g(n)(µ̄)→µ0 as n→
∞. The multifractal analysis in ref. 9 is based on a function Dp which can
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be defined in the following way. Consider a partition of the interval [−1,1]
into subintervals Ij , 1� j �N of length l. Then

Dp = lim
l→0

(
1

p −1

ln
∑N

j=1(µ0(Ij ))
p

ln l

)
= α

ln 2
F(β(α)) . (32)

It follows from (32) that

N∑
j=1

(µ0(Ij ))
p ∼ NDp(1−p) . (33)

Another characteristic of a multifractal measure is given by its spectrum
of dimensions f (α) which is just the Legendre transform of Dp(p −1):

f (α)= inf
p

[αp −Dp(p −1)] . (34)

The dual Legendre relation allows one to find Dp(p −1) from f (α):

Dp(p −1)= inf
α

[αp −f (α)] . (35)

We next find a correspondence between the pair (Dp(p−1), f (α)) and the
pair of thermodynamic functions (F (β), dH (α)). We shall show that

Dp(p −1)=−F−1(p ln 2), f (α)=dH (α) , (36)

where F−1 is an inverse function to the free energy F(β). To derive the
first relation we consider the dynamical partition �

(n)
i ,0 � i � 2n − 1 and

assume that n1 but l �mini |�(n)
i |. For each �

(n)
i define

M(�
(n)
i )=

∑
j :Ij ⊂�

(n)
i

(µ0(Ij ))
p . (37)

Notice that the asymptotic behavior of M(�
(n)
i ) depends only on asymp-

totic scalings of smaller elements of the dynamical partitions �
(n+m)
s

inside �
(n)
i . The thermodynamic formalism constructed above implies that

asymptotically those scalings are completely determined by the potential U
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and hence they do not depend on i. Rescaling the invariant measure inside
�

(n)
i by a factor 2n we conclude that

M(�
(n)
i )= 1

2np

∑
j :Ij ⊂�

(n)
i

(2nµ0(Ij ))
p ∼ 1

2np
N

Dq(1−p)

i , (38)

where Ni is a total number of the intervals Ij inside �
(n)
i . Taking the sum

over i and using (14) we have

N∑
j=1

(µ0(Ij ))
p =

∑
0�i�2n−1

M(�
(n)
i ) ∼ 1

2np

∑
0�i�2n−1

N
Dp(1−p)

i

∼ 1
2np

∑
0�i�2n−1

(
|�(n)

i |
l

)Dp(1−p)

∼ 1
2np

NDp(1−p) exp[nF(Dp(1−p))].

(39)

This together with (33) immediately gives

exp[F(Dp(1−p))]=2p (40)

which implies the first relation in (36). We next show that the second rela-
tion holds. Using (34) we have

f (α) = inf
p

[αp −Dp(p −1)]= inf
p

[αp − (−F−1(p ln 2)]= inf
z

[ α

ln 2
z+F−1(z)

]

= inf
β

[ α

ln 2
F(β)+β

]
= α

ln 2
inf
β

[
ln 2
α

β +F(β)

]
. (41)

It is easy to see that the extremum in (41) corresponds to β(α) =
(F ′)−1

(
− ln 2

α

)
which implies

f (α)=β(α)+ α

ln 2
F(β(α))=dH (α) . (42)

Finally we express the scaling exponents ζp for the structure functions
through the thermodynamic characteristics. The exponent ζp is defined by
the scaling relation

〈|u(x + l)−u(x)|p〉 ∼ lζp (43)



Multifractality of the Feigenbaum Attractor and Fractional Derivatives 683

in terms of the integral u(x) of the invariant measure. Let Ij , 1� j �N =
2/l be a partition of [−1,1] into intervals of length l. Then

〈|u(x + l)−u(x)|p〉 = 1
N

N∑
j=1

(µ0(Ij ))
p ∼ lNDp(1−p) ∼ l1+Dp(p−1) (44)

which together with (36) gives

ζp =1+Dp(p −1)=1−F−1(p ln 2) . (45)

Using (35) one can also write ζp in the following form:

ζp =1+ inf
α

[αp −f (α)]=1+ inf
α

[αp −dH (α)] . (46)

At α = α� the infimum (46) is attained, we can then write the relation
between p and α� as

p =d ′
H (α)|α=α� = F(β(α�))

ln 2
. (47)

The scaling exponents for the structure functions are hence obtained as

ζp =1−β(α�) . (48)

We now turn to concrete calculations for the scheme presented above.
It is easy to see that all the thermodynamic functions can be effectively
approximated numerically. The first step is to find approximations for the
thermodynamic potential U(ε(1), ε(2), . . . , ε(n), . . . ). We shall use Markov
approximations Uk(ε

(1), ε(2), . . . , ε(k)) which are defined by the following
formula:

Uk(ε
(1), ε(2), . . . , ε(k))= lim

n→∞ ln

∣∣�(n)

1,0,...,0,ε(k),ε(k−1),...,ε(1)

∣∣
∣∣�(n−1)

1,0,...,0,ε(k),ε(k−1),...,ε(2)

∣∣ . (49)

It was shown in ref. 6 that the limit in (49) exists and

|U(ε(1), ε(2), . . . , ε(k), ε(k+1), . . . )−Uk(ε
(1), ε(2), . . . , ε(k))|�C(2γ )k . (50)
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Using the approximate potential Uk we can construct a Markov approx-
imation for the transfer-matrix operator L(β). Namely, we define a finite
dimensional linear operator Lk(β):

Lk(β)h(ε(1), ε(2), . . . , ε(k)) =
∑

ε(0)=0,1

exp[βUk+1(ε
(0), ε(1), ε(2), . . . , ε(k))]

×h(ε(0), ε(1), ε(2), . . . , ε(k−1)) . (51)

In the matrix representation the operator Lk(β) corresponds to a
certain 2k ×2k matrix. Denote by λK(β) its largest eigenvalue. Then

Fk(β)= ln λk(β) (52)

is a natural approximation for the free energy F(β). It follows from (50)
that Fk(β) converges to F(β) exponentially fast in C∞ topology. Using
Fk(β) we can effectively approximate all the multifractal functions which
we discussed above. The corresponding numerical results are presented in
the next section.

2.3. Numerical Calculation of the Free Energy and the Scaling

Exponents

Here we show how to construct the transfer-matrix operator Lk start-
ing from k =0 to general k. Note that transfer-matrix calculations for the
cases k =0,1 were also considered by M. Feigenbaum.(10,11) For k =0, the
matrix operator L0 is just a scalar. Denoting �

(n)
ε1,... ,εn by �(n)(ε1, . . . , εn)

for clarity, let us consider

exp[U1(ε
(0))]= lim

n→∞
|�(n)(1,

n−2︷ ︸︸ ︷
0, . . . ,0, ε(0))|

|�(n−1)(1,0, . . . ,0︸ ︷︷ ︸
n−2

)| , (53)

whose analytical expression is easy to calculate. The 0-th order approxima-
tion of the free energy is given by

F0(β)= ln[eβU1(0) + eβU1(1)]. (54)

For ε(0) =0, since �
(n)

0 = [−α−n, α−n] and �
(n)

1 = [g(α−n),1], we have

|�(n)(1,0, . . . ,0)|=1−g(α−n)= cα−2n +O(α−4n), (55)
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where we use the expansion (5) of g(x). Thus c=1.527 . . .. Therefore, the
corresponding component of L0(β =1) is

eU1(0) = lim
n→∞

|cα−2n +O(α−4n)|
|cα−2(n−1) +O(α−4(n−1))| =α−2. (56)

Before considering the second term in the argument of the logarithm in
(54), we recall the relation

g(2n)(α−nx)= (−1)nα−ng(x), (57)

which played a primary role in the proof of Theorem 4.1. of ref. 6. Since
�(n)(1,0, . . . ,0,1)=�

(n)

1+2n−1 , in view of (57), we have

|�(n)(1,0, . . . ,0,1)| = |g(1+2n−1)(0)−g(1+2n−1)(α−n)|
= |cα−2(n−1){[g(α−1)]2 −1}+O(α−4(n−1))|. (58)

Thus for ε(0) =1, (53) can be rewritten as

eU1(1) = lim
n→∞

|cα−2(n−1){[g(α−1)]2 −1}+O(α−4(n−1))|
|cα−2(n−1) +O(α−4(n−1))| =1− [g(α−1)]2.

(59)

We now arrive at the expression for the 0-th order approximation of the
free energy:

F0(β)= ln[α−2β +{1− [g(α−1)]2}β ]. (60)

Next, consider the k = 1 approximation to the transfer matrix L1(β).
From (51), it can be written in standard matrix notation as

(
eβU2(0,0) eβU2(1,0)

eβU2(0,1) eβU2(1,1)

)
. (61)

It then follows that the free energy is given by

F1(β) = ln
[
eβU2(0,0) + eβU2(1,1) +

√
(eβU2(0,0) − eβU2(1,1))2 +4eβU2(1,0)eβU2(0,1)

]

− ln 2. (62)
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The four components of the transfer matrix require the evaluation of suit-
able exponential terms, expressible by (49), from

exp[U2(ε
(0), ε(1))]= lim

n→∞
|�(n)(1,

n−3︷ ︸︸ ︷
0, . . . ,0, ε(1), ε(0))|

|�(n−1)(1,0, . . . ,0︸ ︷︷ ︸
n−3

, ε(1))| . (63)

Each of these terms is calculated in the same manner as for the k=0 case:

eU2(0,0) = lim
n→∞

|�(n)(1,0, . . . ,0)|
|�(n−1)(1,0, . . . ,0)| =α−2, (64)

eU2(1,0) = lim
n→∞

|�(n)(1,0, . . . ,0,1)|
|�(n−1)(1,0, . . . ,0)| = [g(0)]2 − [g(α−1)]2

= 1− [g(α−1)]2, (65)

eU2(0,1) = lim
n→∞

|�(n)(1,0, . . . ,0,1,0)|
|�(n−1)(1,0, . . . ,0,1)|

= |[g(0)]2 − [g(α−2)]2|
|[g(0)]2 − [g(α−1)]2| = 1− [g(α−2)]2

1− [g(α−1)]2
, (66)

eU2(1,1) = lim
n→∞

|�(n)(1,0, . . . ,0,1,1)|
|�(n−1)(1,0, . . . ,0,1)|

= |[g(3)(0)]2 − [g(3)(α−2)]2|
|[g(0)]2 − [g(α−1)]2| . (67)

For k =2, we just write down the transfer matrix L2(β):

⎛
⎜⎜⎝

eβU3(0,0,0) 0 eβU3(1,0,0) 0
eβU3(0,0,1) 0 eβU3(1,0,1) 0

0 eβU3(0,1,0) 0 eβU3(1,1,0)

0 eβU3(0,1,1) 0 eβU3(1,1,1)

⎞
⎟⎟⎠ . (68)

Now we are in a position to calculate the transfer matrix Lk(β) for
general k. Let us consider the component for β =1:

exp[Uk+1(ε
(0), ε(1), . . . , ε(k))] = lim

n→∞
|�(n)(1,

n−k−2︷ ︸︸ ︷
0, . . . ,0, ε(k), . . . , ε(1), ε(0))|

|�(n−1)(1,0, . . . ,0︸ ︷︷ ︸
n−k−2

, ε(k), . . . , ε(1))|
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= lim
n→∞

|g(�(n)(

n−k−2︷ ︸︸ ︷
0, . . . ,0, ε(k), . . . , ε(1), ε(0)))|

|g(�(n−1)(0, . . . ,0︸ ︷︷ ︸
n−k−2

, ε(k), . . . , ε(1)))| . (69)

Hence it is enough to calculate |�(n)(0, . . . ,0, ε(k), . . . , ε(1), ε(0))|. For this
we use the following relation:

|�(n)(0, . . . ,0︸ ︷︷ ︸
n−k−2

, ε(k), . . . , ε(1), ε(0))| = |g(ε(k)2n−k−1+...+ε(1)2n−2+ε(0)2n−1)(0)

−g(ε(k)2n−k−1+...+ε(1)2n−2+ε(0)2n−1)(α−n)|
= α−(n−k)|�(k+1)(ε(k), . . . , ε(1), ε(0))|.

(70)

By (70) the numerator in (69) is given by

|�(n)

1+j ·2n−k−1 | = |{1− c α−2(n−k−1)[g(j)(0)]2}
−{1− c α−2(n−k−1)[g(j)(α−(k+1))]2}+O(α−4(n−k))|}

= c α−2(n−k−1)|[g(j)(0)]2 − [g(j)(α−(k+1))]2|+O(α−4(n−k)).

(71)

Therefore the component (69) is expressed as

exp[Uk+1(ε
(0), ε(1), . . . , ε(k))]=

∣∣∣∣∣
[g(j)(0)]2 − [g(j)(α−(k+1))]2

[g(j ′)(0)]2 − [g(j ′)(α−k)]2

∣∣∣∣∣ , (72)

where j =ε(k) +ε(k−1)2+· · ·+ε(1)2k−1 +ε(0)2k and j ′ =ε(k) +ε(k−1)2+· · ·+
ε(1)2k−1. In other words, if the coordinates of the end points of the inter-
vals are given by �

(k+1)
j = [a(k+1)

j , b
(k+1)
j ] and �

(k)

j ′ = [a(k)

j ′ , b
(k)

j ′ ], the com-
ponent (69) can be rewritten as

exp[Uk+1(ε
(0), ε(1), . . . , ε(k))]=

∣∣∣∣∣∣∣

(
a

(k+1)
j

)2 −
(
b

(k+1)
j

)2

(
a

(k)

j ′
)2 −

(
b

(k)

j ′
)2

∣∣∣∣∣∣∣
. (73)
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If the transfer matrix is written as an ordinary 2k × 2k matrix, it is easily
found that the row and columns indices of the component (69) are given
by (row, column)= (p, q), where

(row) p = 1+ ε(k) + ε(k−1)2+· · ·+ ε(1)2k−1, (74)

(column) q = 1+ ε(k−1) + ε(k−2)2+· · ·+ ε(0)2k−1. (75)

For numerical calculation of the functions Fk(β) and ζp associated to
u(x), we use the expansion (5) for g(x), as given in ref. 12. We include
terms up to x32. Numerical calculation is done with standard double
precision (15 significant digits). For obtaining the largest eigenvalue, we
use the power method for matrices.(15) The multiplication of the matrix is
stopped when the relative error of the most dominant eigenvalue becomes
less than 10−13, thus giving 10−13 absolute error on the F(β) function.
An alternative approach, also based on the thermodynamic formalism and
yielding 10-digit accuracy, may be found in ref. 16. Approximate free ener-
gies Fk(β), with k up to 16, calculated by the transfer-matrix method are
shown in Fig. 3. We note that the k = 0 approximation (60) already gives
a reasonable estimate. The discrepancy of the free energy between var-
ious orders of approximations is visible at large β. However the β > 0
region is irrelevant as far as ζp for positive p is concerned (see Eq. (48)).
The corresponding ζp (p � 0) are calculated from the Fk(β) by (45) for
different values of k; the results, which hardly depend on k, are shown
in Fig. 4(a). We also determined the structure functions of u(x) with 217
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Fig. 3. The k-th order approximation to the free energy Fk(β). Inset: Enlargement of the
region 6≤β ≤10; when increasing k, alternate convergence is observed.
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Fig. 4. (a) Scaling exponents ζp of structure functions obtained by two methods. Open cir-
cles: data obtained by a least-square fit of the slopes of the directly measured structure func-
tions shown in (b). Lines: data calculated from the free energy Fk(β) using (45) (curves for
different k are essentially indistinguishable).

uniform bins in [−1,1]; they are plotted in Fig. 4(b). The exponents ζp

are then obtained by a least square fit of the structure functions over the
range 2−16 ∼ 1.5 × 10−6 � r � 1. With this number of bins, the quality of
the fit begins to somewhat deteriorate beyond p=4, but otherwise there is
rather good agreement between the two methods of determining ζp. Note
that the “y-intercept” of the graph of ζp, namely ζ0, which is the codi-
mension of the support of the invariant measure µ0(dx), is positive and
its numerical value is slightly under one half.(6) This will be important in
the sequel.

3. FRACTIONAL DERIVATIVES FOR THE FEIGENBAUM ATTRACTOR

3.1. Phenomenology for Multifractality and Fractional Derivatives

In this section we briefly recall the phenomenological approach to
multifractality via fractional derivatives(1) and adapt it to a multifractal
measure. We therefore work, not with the measure µ0(dx) itself, but with
its integral u(x). Singularity exponents α may be viewed as local Hölder
exponents of u(x), i.e., |u(x + l)−u(x)|∝ |l|α for (l →0). We turn to frac-
tional derivatives of order a defined, as in ref. 1, as the multiplication in
the Fourier space by û(k) by |k|a (see ref. 1 for precise definition). An iso-
lated non-oscillatory singularity with exponent α at a point x implies

|Dau(y)|∼ |y −x|α−a (y →x). (76)

If α − a < 0, as we shall assume hereafter, the exponent is negative, the
fractional derivative can become arbitrarily large and thus contributes to
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the tail-behavior of the probability. A key assumption in the phenomenol-
ogy is that this argument can be carried over to non-isolated multifrac-
tal singularities, provided we take all types of singularities into account.
For the Feigenbaum invariant measure, we know the Hausdorff dimension
dH (α) of the set of points having a singularity with exponent α. Assuming
that we can also use dH (α) as a covering dimension, we can express the
probability to have a singularity of exponent α contributing a fractional
derivative of order a which exceeds (in absolute value) a given large value
ξ , that is we require

|y −x|<ξ− 1
a−α . (77)

In terms of the codimension of the set Iα, the probability to satisfy (77)
is written as

Prob{|Dau|>ξ}∝ |y −x|d−dH (α) ∝ ξ− d−dH (α)

a−α . (78)

Here d is the spatial dimension (d =1). Taking now into account the sin-
gularities with all possible exponents α, the tail of the cumulative proba-
bility of the fractional derivative of order a is given, to the leading order,
by the following power law

Prob{|Dau|>ξ}∝ ξ−p� , ξ →∞, (79)

p� = inf
α<a

d −dH (α)

a −α
. (80)

An easy calculation shows that α� corresponding to the infimum in (80)
satisfies

α� =α�(a)=a + dH (α�)−d

d ′
H (α�)

, (81)

which immediately gives p� =d ′
H (α�). On the other hand, we know that

ζp = inf
α

(pα +d −dh(α)). (82)

Here the infimum is given by an α satisfying the very same relation p� =
d ′
H (α�). Hence,

ζp� =p�α� +d −dH (α�). (83)
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Using (81), we get

ζp� =p�

(
a + dH (α�)−d

d ′
H (α�)

)
+d −dH (α�)=p�a, (84)

where the second relation follows from p� =d ′
H (α�). The geometrical inter-

pretation of this equation is that the (negative) exponent of the power-law
tail for the fractional derivative of order a is the p-value of the intersec-
tion of the graph of ζp and of a straight line of slope a through the origin.

As shown in ref. 1, in the presence of the finite range of scaling, the
power-law tail (79) emerges only if the multifractality is sufficiently strong.
This strength is given by the multifractality parameter C(a), a measure of
how strongly the data depart from being self similar (which would imply
ζp ∝p):

C(a)≡a −α� = ζp�

p�

− dζp

dp

∣∣∣∣
p=p�

, (85)

where α� ≡ dζp/dp|p=p� . It was shown that observability of the power-
law requires a sufficiently large value for the product nC(a), where n is
the number of octaves over which the data present multifractal scaling. In
practice it was found in ref. 1 that

nC(a)�10. (86)

For example, fully-developed turbulence velocity data(17) have typical C

values of the order of 1/30, thereby requiring a monstrous inertial range
of about 300 octaves for observability of power-law tails. As we shall see,
the situation is much more favorable for the Feigenbaum invariant mea-
sure.

Before turning to numerical issues, we comment on an issue raised by
an anonymous referee who worried about the nonlocal character of the
fractional derivative and wrote in essence that our approach makes sense,
strictly speaking, only for (statistically) translationally invariant in space
systems: otherwise, if the system consists of components whose “fractal
properties” are rather different the results will be smeared out. Our feel-
ing about such matters is summarized as follows. First one can observe
that, of course, the attractor for the Feigenbaum map is not homogeneous
(translation-invariant) but after zooming in it becomes increasingly so; the
fractional derivative is not a local operator but the tail of its PDF is likely
to be dominated by strongly localized events. Second, a more technical
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observation. The idea of the multi-fractal analysis is based on the fact that
the dynamics of a system determines a variety of scales. It is important
that these scales do not depend on a particular place in the phase space.
On the contrary, they are present and “interact” with each other every-
where. In the case of the Feigenbaum attractor the scales depend on a
symbolic location in a system of partitions. In physical systems, like homo-
geneous turbulence, such partitions are difficult to define rigorously. How-
ever, the invariance with respect to the space coordinate is still present and
forms a basis for applicability of the multifractal calculus.

3.2. Numerical Analysis of Fractional Derivatives

The phenomenological arguments presented in the previous section
suggest that we should find power-law tails in the cumulative probabil-
ity for fractional derivatives of u(x) for suitable orders a. Inspection of
Fig. 4 indicates that a should be between the minimum slope of the
graph and unity. The value a = 1 is of course not a fractional order
but, as we shall see, it is associated with a power-law tail of exponent
minus one.6 The minimum slope can be easily found. Indeed, F(β) takes
large values when β is large negative. In this case the main contribu-
tion to F(β) comes from the shortest interval of the partition with the
length of the order of γ 2n. Hence, F(β)/|β| → −2 ln γ in the limit β →
−∞. This gives the following lower bound of the differentiation order:

lim
p→∞

ζp

p
= lim

p→∞
1−F−1(p ln 2)

p
=− ln 2

2 ln γ
≈0.3777. (87)

Table I. Feigenbaum Invariant Measure: Scaling Exponents ζp , Inverse Temperature

β, Multifractality Parameter C and Number of Scaling Octaves Needed

p ζp β C Number of octaves needed

1.0 1.0 0.0 0.48 21
1.5 1.2540292658 −2.54029265895 0.34 29
2.0 1.4985620106 −4.98562010659 0.28 36
2.5 1.7344372955 −7.34437295506 0.24 42
3.0 1.9625763533 −9.62576353333 0.22 45

6This is a consequence of ζ1 = 1 − F−1(ln 2) = 1. (Putting β = 0 into the partition function

Zk(β)∼∑2k−1
j=0 |�(k)

j |β , we have Fk(0)= ln Zk(0)/k = ln 2.)
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We have already observed that, because the ζp graph does not pass
through the origin, substantial values can be expected for the multifrac-
tality parameter C(a). The actual values of C, associated to values of p

ranging from 1 to 3 by increments of 0.5 are shown in Table I, together
with the number n of scaling octaves needed determined by nC ≈ 10 (cf.
Eq. (86)). In practice, on a 32 bit machine, we are limited to about
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Fig. 5. Cumulative probabilities of absolute values of fractional derivatives of various
orders a = ζp�/p� for the Feigenbaum invariant measure. Each function displays a power-law
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(a) a = 1.0 (p� = 1.0). (b) a = 0.83 (p� = 1.5). (c) a = 0.74 (p� = 2.0). (d) a = 0.69 (p� = 2.5).
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25 octaves of dynamical range in resolution over the interval [−1, 1]. This
should be enough to observe power-law tails.

Indeed, Fig. 5 shows five instances of cumulative probabilities of frac-
tional derivatives with power-law tails, corresponding to the values of the
exponent p listed in Table I. The corresponding order of differentiation a

ranges between 0.65 and 1. 7 Since the function u(x) which we are analyzing
is not periodic, we resort to the Hann windowing technique employed pre-
viously in ref. 1 (Section 13.4). Also, we use rank ordering to avoid binning.

The power-law behavior observed is consistent with the phenomeno-
logical theory presented in Section 3.1, the residual discrepancies being
due to the resolution of 225 bins.

4. CONCLUDING REMARKS

We have found solid numerical evidence for the presence of power-law
tails in the cumulative distribution of fractional derivatives for the integral
u(x) of the invariant measure of the Feigenbaum map. Furthermore the
exponents measured are consistent with those predicted by phenomenolog-
ical arguments from the spectrum of singularities. Since we have a fairly
deep understanding of the structure of the attractor, thanks in particular
to the thermodynamic formalism, a reasonable goal may be to actually
prove the results. The main difficulty is that the operation of fractional
derivative is non-local. However, we believe that a rigorous analysis here
is still possible due to the quite simple spectral structure of the dynamical
system corresponding to the Feigenbaum attractor.
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